1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \log (2+x)^{2+x} d x= $$

A
$\frac{(2+x)^2}{2} \log \left(\frac{2+x}{\sqrt{\mathrm{e}}}\right)+\mathrm{c}$, where c is the constant of integration
B
$\frac{(2+x)^2}{2} \log \left(\frac{2+x}{\mathrm{e}}\right)+\mathrm{c}$, where c is the constant of integration
C
$\frac{2+x}{2} \log \left(\frac{2+x}{\sqrt{\mathrm{e}}}\right)+\mathrm{c}$, where c is the constant of integration
D
$\frac{2+x}{2} \log (2+x) \sqrt{\mathrm{e}}+\mathrm{c}$, where c is the constant of integration
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the projection of $\bar{a}$ on $\bar{b}+\bar{c}$ is twice the projection of $\bar{b}+\bar{c}$ on $\bar{a}$ also if $|\bar{b}|=2 \sqrt{2},|\bar{c}|=4$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{4}$ then $|\overline{\mathrm{a}}|=$

A
$2 \sqrt{10}$
B
$3 \sqrt{10}$
C
$4 \sqrt{10}$
D
$5 \sqrt{10}$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane passing through the point of intersection of the planes $2 x-y+z-3=0$ and $4 x-3 y+5 z+9=0$ and parallel to the line $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z-3}{5}$ is $\alpha x+\beta y+\gamma z+d=0$ Then $\alpha+\beta+\gamma+d=$

A
48
B
-48
C
84
D
45
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the points $\mathrm{A}(1,1,2), \mathrm{B}(2,1, \mathrm{p}), \mathrm{C}(1,0,3)$ and $D(2,2,0)$ are coplanar then the value of $p$ is

A
0
B
-1
C
1
D
2
MHT CET Papers
EXAM MAP