1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $(2,4,0)$ from the point of intersection of the lines $\frac{x+6}{3}=\frac{y}{2}=\frac{z+1}{1}$ and $\frac{x-7}{4}=\frac{y-9}{3}=\frac{z-4}{2}$ is

A
3 units
B
$3 \sqrt{3}$ units
C
2 units
D
$2 \sqrt{3}$ units
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $\cos \left(59^{\circ} 30^{\prime}\right)$ is (given $1^{\circ}=0.0175^{\mathrm{c}}, \sin 60^{\circ}=0.8660$ )

A
0.5076
B
0.5176
C
0.5256
D
0.5150
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The co-ordinates of the point where the line joining the points $(2,-3,1)$ and $(3,-4,-5)$ and intersects the plane $2 x+y+z=7$ are

A
$\quad(-1,2,7)$
B
$(1,2,3)$
C
$(2,1,2)$
D
$(1,-2,7)$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \mathrm{e}^x \frac{(x-1)}{(x+1)^3} \mathrm{~d} x= $$

A
$\mathrm{e}^x(x+1)^2+\mathrm{c}$, where c is the constant of integration
B
$\mathrm{e}^x(x+1)^3+\mathrm{c}$, where c is the constant of integration
C
$\frac{\mathrm{e}^x}{(x+1)^2}+\mathrm{c}$, where c is the constant of integration
D
$\frac{\mathrm{e}^x}{(x+1)^3}+\mathrm{c}$, where c is the constant of integration
MHT CET Papers
EXAM MAP