1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $u=\frac{\tan ^{-1} x}{\tan ^{-1} x+1}$ and $v=\tan ^{-1}\left(\tan ^{-1} x\right)$ then $\frac{d u}{d v}=$

A
1
B
$\frac{1+\left(\tan ^{-1} x\right)^2}{\left(1+\tan ^{-1} x\right)^2}$
C
$\frac{\tan ^{-1} x}{\left(1+\tan ^{-1} x\right)^2}$
D
$\frac{1}{\left(1+\tan ^{-1} x\right)^2}$
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\bar{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$ then the value of $(2 \overline{\mathrm{a}}-\overline{\mathrm{b}}) \cdot[(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}})]=$

A
$\frac{1}{5}$
B
-5
C
5
D
$-\frac{1}{5}$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the line $\frac{x+1}{3}=\frac{y-k}{7}=\frac{z-4}{8}$ lies in the plane $2 x+\mathrm{p} y+7 z-41=0$ which is perpendicular to the plane $x+4 y-2 z+13=0$ then $\mathrm{k}=$

A
$\frac{16}{3}$
B
$\frac{-16}{3}$
C
$\frac{26}{3}$
D
$\frac{-26}{3}$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equations of two ellipses are $\frac{x^2}{4}+\frac{y^2}{2}=1$ and $\frac{x^2}{36}+\frac{y^2}{\mathrm{~b}^2}=1$. If the product of their eccentricities is $\frac{\sqrt{2}}{3}$, then the product of the length of the major axis and minor axis of the second ellipse is

A
$12 \sqrt{5}$
B
720
C
$6 \sqrt{20}$
D
$48 \sqrt{5}$
MHT CET Papers
EXAM MAP