A random variable $X$ takes the values $0,1,2,3$, $\qquad$ with probability
$\mathrm{P}(\mathrm{X}=x)=\mathrm{k}(x+1)\left(\frac{1}{5}\right)^x$, where k is a constant.
Then $\mathrm{P}(\mathrm{X}=0)$ is
If $u=\frac{\tan ^{-1} x}{\tan ^{-1} x+1}$ and $v=\tan ^{-1}\left(\tan ^{-1} x\right)$ then $\frac{d u}{d v}=$
If $\bar{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\bar{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$ then the value of $(2 \overline{\mathrm{a}}-\overline{\mathrm{b}}) \cdot[(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}})]=$
If the line $\frac{x+1}{3}=\frac{y-k}{7}=\frac{z-4}{8}$ lies in the plane $2 x+\mathrm{p} y+7 z-41=0$ which is perpendicular to the plane $x+4 y-2 z+13=0$ then $\mathrm{k}=$