1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC with usual notations if $|\overline{\mathrm{BC}}|=8,|\overline{\mathrm{CA}}|=7,|\overline{\mathrm{AB}}|=10$ then the projection of $\overline{\mathrm{AB}}$ on $\overline{\mathrm{AC}}$ is

A
$\frac{14}{85}$ units
B
$\frac{1}{85}$ units
C
$\frac{85}{14}$ units
D
$\frac{7}{85}$ units
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=\hat{i}+\hat{j}, \bar{b}=2 \hat{i}-\hat{k}$ then the point of intersection of the lines $\overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}$ and $\overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is

A
$(3,-1,1)$
B
$\quad(3,1,-1)$
C
$(-3,1,1)$
D
$(1,1,1)$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A scholarship amount is given by $\mathrm{z}=550 x+300 y$ and is to be distributed among $x$ boys and $y$ girls. From the graph given below the maximum amount of scholarship is __________

MHT CET 2025 20th April Evening Shift Mathematics - Linear Programming Question 2 English
A
7250
B
9250
C
4250
D
5750
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \log (2+x)^{2+x} d x= $$

A
$\frac{(2+x)^2}{2} \log \left(\frac{2+x}{\sqrt{\mathrm{e}}}\right)+\mathrm{c}$, where c is the constant of integration
B
$\frac{(2+x)^2}{2} \log \left(\frac{2+x}{\mathrm{e}}\right)+\mathrm{c}$, where c is the constant of integration
C
$\frac{2+x}{2} \log \left(\frac{2+x}{\sqrt{\mathrm{e}}}\right)+\mathrm{c}$, where c is the constant of integration
D
$\frac{2+x}{2} \log (2+x) \sqrt{\mathrm{e}}+\mathrm{c}$, where c is the constant of integration
MHT CET Papers
EXAM MAP