1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\mathop {\lim }\limits_{x \to 0} \frac{\left(7^x-1\right)^4}{\tan \left(\frac{x}{\mathrm{k}}\right) \cdot \log \left(1+\frac{x^2}{3}\right) \cdot \sin 4 x}=3(\log 7)^3$, then $\mathrm{k}=$

A
$\quad 4(\log 7)^{-1}$
B
$\frac{1}{4}(\log 7)^{-1}$
C
$\quad 4 \log \left(\frac{1}{7}\right)$
D
$\frac{1}{4} \log 7$
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x^y+y^x=\mathrm{a}^{\mathrm{b}}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1, y=2$ is

A
$-2(1+\log 2)$
B
$\quad 2(1+\log 2)$
C
$2+\log 2$
D
$1+\log 2$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\frac{(\cos \theta+i \sin \theta)^4}{(\sin \theta+i \cos \theta)^5}=$ where $\mathrm{i}=\sqrt{-1}$

A
$\quad \cos \theta-i \sin \theta$
B
$\quad \cos 9 \theta-\mathrm{i} \sin 9 \theta$
C
$\sin \theta-i \cos \theta$
D
$\quad \sin 9 \theta-\mathrm{i} \cos 9 \theta$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=2 x^3+\mathrm{m} x^2-13 x+\mathrm{n}$ and 2,3 are the roots of the equation $\mathrm{f}(x)=0$ then the value of $4 m+5 n$ is

A
30
B
100
C
130
D
150
MHT CET Papers
EXAM MAP