In $$\triangle \mathrm{ABC}$$, with usual notations, $$\mathrm{m} \angle \mathrm{C}=\frac{\pi}{2}$$, if $$\tan \left(\frac{A}{2}\right)$$ and $$\tan \left(\frac{B}{2}\right)$$ are the roots of the equation $$a_1 x^2+b_1 x+c_1=0\left(a_1 \neq 0\right)$$, then
If $$\int \frac{\sin x}{3+4 \cos ^2 x} \mathrm{~d} x=\mathrm{A} \tan ^{-1}(\mathrm{~B} \cos x)+\mathrm{c}$$, (where $$\mathrm{c}$$ is a constant of integration), then the value of $$\mathrm{A}+\mathrm{B}$$ is
Vectors $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ are such that $$|\overline{\mathrm{a}}|=1 ;|\overline{\mathrm{b}}|=4$$ and $$\bar{a} \cdot \bar{b}=2$$. If $$\bar{c}=2 \bar{a} \times \bar{b}-3 \bar{b}$$, then the angle between $$\bar{b}$$ and $$\bar{c}$$ is
If $$y$$ is a function of $$x$$ and $$\log (x+y)=2 x y$$, then the value of $$y^{\prime}(0)$$ is