$$\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$$, then vector $$\overline{\mathrm{r}}$$ satisfying $$\overline{\mathrm{a}} \times \overline{\mathrm{r}}=\overline{\mathrm{b}}$$ and $$\overline{\mathrm{a}} \cdot \overline{\mathrm{r}}=3$$ is
The magnitude of the projection of the vector $$2 \hat{i}+\hat{j}+\hat{k}$$ on the vector perpendicular to the plane containing the vectors $$\hat{i}+\hat{j}+\hat{k}$$ and $$\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$$ is
The shortest distance between the lines $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$$ and $$\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$$ is
If $$\bar{a}, \bar{b}$$ and $$\bar{c}$$ are any three non-zero vectors, then $$(\bar{a}+2 \bar{b}+\bar{c}) \cdot[(\bar{a}-\bar{b}) \times(\bar{a}-\bar{b}-\bar{c})]=$$