1
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ be fixed. If the integral $$\int \frac{\tan x+\tan \alpha}{\tan x-\tan \alpha} \mathrm{d} x=\mathrm{A}(x) \cos 2 \alpha+\mathrm{B}(x) \sin 2 \alpha+\mathrm{c},$$ (where $$\mathrm{c}$$ is a constant of integration), then functions $$\mathrm{A}(x)$$ and $$\mathrm{B}(x)$$ are respectively

A
$$x+\alpha$$ and $$\log |\sin (x+\alpha)|$$.
B
$$x-\alpha$$ and $$\log |\sin (x-\alpha)|$$.
C
$$x-\alpha$$ and $$\log |\cos (x-\alpha)|$$.
D
$$x+\alpha$$ and $$\log |\sin (x-\alpha)|$$.
2
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two adjacent sides of a parallelogram are $$2 \hat{i}-4 \hat{j}+5 \hat{k}$$ and $$\hat{i}-2 \hat{j}-3 \hat{k}$$, then the unit vector parallel to its diagonal is

A
$$\frac{3}{7} \hat{\mathrm{i}}-\frac{6}{7} \hat{\mathrm{j}}+\frac{2}{7} \hat{\mathrm{k}}$$
B
$$\frac{2}{7} \hat{\mathrm{i}}-\frac{6}{7} \hat{\mathrm{j}}+\frac{3}{7} \hat{\mathrm{k}}$$
C
$$\frac{6}{7} \hat{\mathrm{i}}-\frac{2}{7} \hat{\mathrm{j}}+\frac{3}{7} \hat{\mathrm{k}}$$
D
$$\frac{1}{7} \hat{\mathrm{i}}+\frac{1}{7} \hat{\mathrm{j}}-\frac{3}{7} \hat{\mathrm{k}}$$
3
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A water tank has a shape of inverted right circular cone whose semi-vertical angle is $$\tan ^{-1}\left(\frac{1}{2}\right)$$. Water is poured into it at constant rate of 5 cubic meter/minute. The rate in meter/ minute at which level of water is rising, at the instant when depth of water in the tank is $$10 \mathrm{~m}$$ is

A
$$\frac{1}{5 \pi}$$
B
$$\frac{1}{15 \pi}$$
C
$$\frac{2}{\pi}$$
D
$$\frac{1}{10 \pi}$$
4
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all circles which pass through the origin and whose centres lie on $$\mathrm{Y}$$-axis is

A
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-2 x y=0$$
B
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=0$$
C
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y=0$$
D
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-x y=0$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12