1
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ be fixed. If the integral $$\int \frac{\tan x+\tan \alpha}{\tan x-\tan \alpha} \mathrm{d} x=\mathrm{A}(x) \cos 2 \alpha+\mathrm{B}(x) \sin 2 \alpha+\mathrm{c},$$ (where $$\mathrm{c}$$ is a constant of integration), then functions $$\mathrm{A}(x)$$ and $$\mathrm{B}(x)$$ are respectively

A
$$x+\alpha$$ and $$\log |\sin (x+\alpha)|$$.
B
$$x-\alpha$$ and $$\log |\sin (x-\alpha)|$$.
C
$$x-\alpha$$ and $$\log |\cos (x-\alpha)|$$.
D
$$x+\alpha$$ and $$\log |\sin (x-\alpha)|$$.
2
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two adjacent sides of a parallelogram are $$2 \hat{i}-4 \hat{j}+5 \hat{k}$$ and $$\hat{i}-2 \hat{j}-3 \hat{k}$$, then the unit vector parallel to its diagonal is

A
$$\frac{3}{7} \hat{\mathrm{i}}-\frac{6}{7} \hat{\mathrm{j}}+\frac{2}{7} \hat{\mathrm{k}}$$
B
$$\frac{2}{7} \hat{\mathrm{i}}-\frac{6}{7} \hat{\mathrm{j}}+\frac{3}{7} \hat{\mathrm{k}}$$
C
$$\frac{6}{7} \hat{\mathrm{i}}-\frac{2}{7} \hat{\mathrm{j}}+\frac{3}{7} \hat{\mathrm{k}}$$
D
$$\frac{1}{7} \hat{\mathrm{i}}+\frac{1}{7} \hat{\mathrm{j}}-\frac{3}{7} \hat{\mathrm{k}}$$
3
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A water tank has a shape of inverted right circular cone whose semi-vertical angle is $$\tan ^{-1}\left(\frac{1}{2}\right)$$. Water is poured into it at constant rate of 5 cubic meter/minute. The rate in meter/ minute at which level of water is rising, at the instant when depth of water in the tank is $$10 \mathrm{~m}$$ is

A
$$\frac{1}{5 \pi}$$
B
$$\frac{1}{15 \pi}$$
C
$$\frac{2}{\pi}$$
D
$$\frac{1}{10 \pi}$$
4
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all circles which pass through the origin and whose centres lie on $$\mathrm{Y}$$-axis is

A
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-2 x y=0$$
B
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=0$$
C
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y=0$$
D
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-x y=0$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12