1
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A water tank has a shape of inverted right circular cone whose semi-vertical angle is $$\tan ^{-1}\left(\frac{1}{2}\right)$$. Water is poured into it at constant rate of 5 cubic meter/minute. The rate in meter/ minute at which level of water is rising, at the instant when depth of water in the tank is $$10 \mathrm{~m}$$ is

A
$$\frac{1}{5 \pi}$$
B
$$\frac{1}{15 \pi}$$
C
$$\frac{2}{\pi}$$
D
$$\frac{1}{10 \pi}$$
2
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all circles which pass through the origin and whose centres lie on $$\mathrm{Y}$$-axis is

A
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-2 x y=0$$
B
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=0$$
C
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y=0$$
D
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-x y=0$$
3
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$x^{\mathrm{k}}+y^{\mathrm{k}}=\mathrm{a}^{\mathrm{k}}(\mathrm{a}, \mathrm{k}>0)$$ and $$\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{y}{x}\right)^{\frac{1}{3}}=0$$, then $$\mathrm{k}$$ has the value

A
$$\frac{1}{3}$$
B
$$\frac{2}{3}$$
C
$$\frac{1}{4}$$
D
$$\frac{2}{7}$$
4
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) bounded by the curve $$y=x|x|, \mathrm{X}$$-axis and the lines $$x=-1$$ and $$x=1$$ is

A
$$\frac{2}{3}$$
B
$$\frac{1}{3}$$
C
1
D
$$\frac{4}{3}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12