1
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $$\tan ^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right), |x| < \frac{1}{2}, x \neq 0$$

A
$$\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^2$$
B
$$\frac{\pi}{4}+\cos ^{-1} x^2$$
C
$$\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x^2$$
D
$$\frac{\pi}{4}-\cos ^{-1} x^2$$
2
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If slope of a tangent to the curve $$x y+a x+b y=0$$ at the point $$(1,1)$$ on it is 2, then a - b is

A
3
B
1
C
2
D
$$-$$1
3
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of a line, whose perpendicular distance from the origin is 7 units and the angle, which the perpendicular to the line from the origin makes, is $$120^{\circ}$$ with positive $$\mathrm{X}$$-axis, is

A
$$x+\sqrt{3} y-14=0$$
B
$$x+\sqrt{3} y+14=0$$
C
$$x-\sqrt{3} y+14=0$$
D
$$x-\sqrt{3} y-14=0$$
4
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$a, b, c$$ be the lengths of sides of triangle $$A B C$$ such that $$\frac{a+b}{7}=\frac{b+c}{8}=\frac{c+a}{9}=k$$. Then $$\frac{(\mathrm{A}(\triangle \mathrm{ABC}))^2}{\mathrm{k}^4}=$$

A
36
B
32
C
38
D
40
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12