1
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int \frac{\sin x}{3+4 \cos ^2 x} \mathrm{~d} x=\mathrm{A} \tan ^{-1}(\mathrm{~B} \cos x)+\mathrm{c}$$, (where $$\mathrm{c}$$ is a constant of integration), then the value of $$\mathrm{A}+\mathrm{B}$$ is

A
$$\frac{5}{2 \sqrt{3}}$$
B
$$\frac{-1}{2 \sqrt{3}}$$
C
$$\frac{-2}{\sqrt{3}}$$
D
$$\frac{\sqrt{3}}{2}$$
2
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Vectors $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ are such that $$|\overline{\mathrm{a}}|=1 ;|\overline{\mathrm{b}}|=4$$ and $$\bar{a} \cdot \bar{b}=2$$. If $$\bar{c}=2 \bar{a} \times \bar{b}-3 \bar{b}$$, then the angle between $$\bar{b}$$ and $$\bar{c}$$ is

A
$$\frac{\pi}{6}$$
B
$$\frac{5 \pi}{6}$$
C
$$\frac{\pi}{3}$$
D
$$\frac{2 \pi}{3}$$
3
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$y$$ is a function of $$x$$ and $$\log (x+y)=2 x y$$, then the value of $$y^{\prime}(0)$$ is

A
1
B
$$-$$1
C
2
D
0
4
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\cos 2 B=\frac{\cos (A+C)}{\cos (A-C)}$$. Then $$\tan A, \tan B, \tan C$$ are in

A
Geometric Progression.
B
Arithmetic Progression.
C
Harmonic Progression.
D
Arithmetico-Geometric Progression.
MHT CET Papers
EXAM MAP