1
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{a}, \bar{b}$$ and $$\bar{c}$$ are any three non-zero vectors, then $$(\bar{a}+2 \bar{b}+\bar{c}) \cdot[(\bar{a}-\bar{b}) \times(\bar{a}-\bar{b}-\bar{c})]=$$

A
$$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$$
B
$$2\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]$$
C
$$3\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$$
D
$$4\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]$$
2
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In $$\triangle \mathrm{ABC}$$, with usual notations, $$\mathrm{m} \angle \mathrm{C}=\frac{\pi}{2}$$, if $$\tan \left(\frac{A}{2}\right)$$ and $$\tan \left(\frac{B}{2}\right)$$ are the roots of the equation $$a_1 x^2+b_1 x+c_1=0\left(a_1 \neq 0\right)$$, then

A
$$a_1+b_1=c_1$$
B
$$b_1+c_1=a_1$$
C
$$a_1+c_1=b_1$$
D
$$b_1=c_1$$
3
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int \frac{\sin x}{3+4 \cos ^2 x} \mathrm{~d} x=\mathrm{A} \tan ^{-1}(\mathrm{~B} \cos x)+\mathrm{c}$$, (where $$\mathrm{c}$$ is a constant of integration), then the value of $$\mathrm{A}+\mathrm{B}$$ is

A
$$\frac{5}{2 \sqrt{3}}$$
B
$$\frac{-1}{2 \sqrt{3}}$$
C
$$\frac{-2}{\sqrt{3}}$$
D
$$\frac{\sqrt{3}}{2}$$
4
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Vectors $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ are such that $$|\overline{\mathrm{a}}|=1 ;|\overline{\mathrm{b}}|=4$$ and $$\bar{a} \cdot \bar{b}=2$$. If $$\bar{c}=2 \bar{a} \times \bar{b}-3 \bar{b}$$, then the angle between $$\bar{b}$$ and $$\bar{c}$$ is

A
$$\frac{\pi}{6}$$
B
$$\frac{5 \pi}{6}$$
C
$$\frac{\pi}{3}$$
D
$$\frac{2 \pi}{3}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12