1
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A problem in statistics is given to three students A, B and C. Their probabilities of solving the problem are $$\frac{1}{2}, \frac{1}{3}$$ and $$\frac{1}{4}$$ respectively. If all of them try independently, then the probability, that problem is solved, is

A
$$\frac{2}{3}$$
B
$$\frac{3}{4}$$
C
$$\frac{1}{3}$$
D
$$\frac{1}{4}$$
2
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1\end{array}\right], B=\left[\begin{array}{c}6 \\ 11 \\ 0\end{array}\right]$$ and $$X=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$$, if $$\mathrm{AX}=\mathrm{B}$$, then the value of $$2 \mathrm{a}+\mathrm{b}+2 \mathrm{c}$$ is

A
10
B
8
C
6
D
12
3
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$f(x)=\left\{\begin{array}{ll} \frac{1-\cos k x}{x^2}, & \text { if } x \leq 0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & \text { if } x>0 \end{array}\right. \text { is continuous at }$$ $$x=0$$, then the value of $$\mathrm{k}$$ is

A
4
B
2
C
$$-$$1
D
$$-$$3
4
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{D}, \mathrm{E}$$ and $$\mathrm{F}$$ are the mid-points of the sides $$\mathrm{BC}$$, $$\mathrm{CA}$$ and $$\mathrm{AB}$$ of triangle $$\mathrm{ABC}$$ respectively, then $$\overline{\mathrm{AD}}+\frac{2}{3} \overline{\mathrm{BE}}+\frac{1}{3} \overline{\mathrm{CF}}=$$

A
$$\frac{1}{2} \overline{\mathrm{AB}}$$
B
$$\frac{1}{2} \overline{\mathrm{AC}}$$
C
$$\frac{1}{2} \overline{\mathrm{BC}}$$
D
$$\frac{2}{3} \overline{\mathrm{AC}}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12