1
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\cos 2 B=\frac{\cos (A+C)}{\cos (A-C)}$$. Then $$\tan A, \tan B, \tan C$$ are in

A
Geometric Progression.
B
Arithmetic Progression.
C
Harmonic Progression.
D
Arithmetico-Geometric Progression.
2
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\log _2 x+\log _4 x+\log _8 x+\log _{16} x=\frac{25}{36}$$ and $$x=2^{\mathrm{k}}$$ then $$\mathrm{k}$$ is

A
1
B
$$\frac{1}{2}$$
C
$$\frac{1}{3}$$
D
$$\frac{1}{8}$$
3
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\left|\begin{array}{ccc}\cos (A+B) & -\sin (A+B) & \cos (2 B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B\end{array}\right|=0$$, then the value of $$B$$ is

A
$$\mathrm{n} \pi, \mathrm{n} \in \mathbb{Z}$$
B
$$(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{Z}$$
C
$$(2 \mathrm{n}+1) \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$$
D
$$2 \mathrm{n} \frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$$
4
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

General solution of the differential equation $$\log \left(\frac{d y}{d x}\right)=a x+b y$$ is

A
$$a e^{b y}+b e^{a x}=c_1$$, where $$c_1$$ is a constant.
B
$$a e^{-b y}+b^{-a x}=c_1$$, where $$c_1$$ is a constant.
C
$$a e^{-b y}+b e^{a x}=c_1$$, where $$c_1$$ is a constant.
D
$$a e^{b y}+b e^{-a x}=c_1$$, where $$c_1$$ is a constant.
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12