$$\lim _\limits{x \rightarrow 0} \frac{(1-\cos 2 x) \cdot \sin 5 x}{x^2 \sin 3 x}$$ is
If $$\mathrm{g}$$ is the inverse of $$\mathrm{f}$$ and $$\mathrm{f}^{\prime}(x)=\frac{1}{1+x^3}$$, then $$\mathrm{g}^{\prime}(x)$$ is
A problem in statistics is given to three students A, B and C. Their probabilities of solving the problem are $$\frac{1}{2}, \frac{1}{3}$$ and $$\frac{1}{4}$$ respectively. If all of them try independently, then the probability, that problem is solved, is
Let $$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1\end{array}\right], B=\left[\begin{array}{c}6 \\ 11 \\ 0\end{array}\right]$$ and $$X=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$$, if $$\mathrm{AX}=\mathrm{B}$$, then the value of $$2 \mathrm{a}+\mathrm{b}+2 \mathrm{c}$$ is