1
GATE EE 2022
+1
-0.33

Let a causal LTI system be governed by the following differential equation $$y(t) + {1 \over 4}{{dy} \over {dt}} = 2x(t)$$, where x(t) and y(t) are the input and output respectively. Its impulse response is

A
$$2{e^{ - {1 \over 4}t}}u(t)$$
B
$$2{e^{ - 4t}}u(t)$$
C
$$8{e^{ - {1 \over 4}t}}u(t)$$
D
$$8{e^{ - 4t}}u(t)$$
2
GATE EE 2022
+1
-0.33

Let an input x(t) = 2 sin(10$$\pi$$t) + 5 cos(15$$\pi$$t) + 7 sin(42$$\pi$$t) + 4 cos(45$$\pi$$t) is passed through an LTI system having an impulse response,

$$h(t) = 2\left( {{{\sin (10\pi t)} \over {\pi t}}} \right)\cos (40\pi t)$$

The output of the system is

A
$$2\sin (10\pi t) + 5cos(15\pi t)$$
B
$$5\cos (15\pi t) + 7sin(42\pi t)$$
C
$$7\sin (42\pi t) + 4cos(45\pi t)$$
D
$$2\sin (10\pi t) + 4cos(45\pi t)$$
3
GATE EE 2022
+1
-0.33

Consider the system as shown below:

where y(t) = x(et). The system is

A
linear and causal.
B
linear and non-causal.
C
non-linear and causal.
D
non-linear and non-causal.
4
GATE EE 2022
+1
-0.33

The discrete time Fourier series representation of a signal x[n] with period N is written as $$x[n] = \sum\nolimits_{k = 0}^{N - 1} {{a_k}{e^{j(2kn\pi /N)}}}$$. A discrete time periodic signal with period N = 3, has the non-zero Fourier series coefficients : a$$-$$3 = 2 and a4 = 1. The signal is

A
$$2 + 2{e^{ - \left( {j{{2\pi } \over 6}n} \right)}}\cos \left( {{{2\pi } \over 6}n} \right)$$
B
$$1 + 2{e^{\left( {j{{2\pi } \over 6}n} \right)}}\cos \left( {{{2\pi } \over 6}n} \right)$$
C
$$1 + 2{e^{\left( {j{{2\pi } \over 3}n} \right)}}\cos \left( {{{2\pi } \over 6}n} \right)$$
D
$$2 + 2{e^{\left( {j{{2\pi } \over 6}n} \right)}}\cos \left( {{{2\pi } \over 6}n} \right)$$
GATE EE Papers
2023
2022
2021
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
EXAM MAP
Medical
NEET