1
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of a compensator is given as $${G_c}\left( s \right) = {{s + a} \over {s + b}}$$

The phase of the above lead compensator is maximum at

A
$$\sqrt 2 \,rad/s$$
B
$$\sqrt 3 \,rad/s$$
C
$$\sqrt 6 \,rad/s$$
D
$$1/$$ $$\sqrt 3 \,rad/s$$
2
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
The state variable description of an $$LTI$$ system is given by $$$\left( {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr {\mathop {{x_3}}\limits^ \bullet } \cr } } \right) = \left( {\matrix{ 0 & {{a_1}} & 0 \cr 0 & 0 & {{a_2}} \cr {{a_3}} & 0 & 0 \cr } } \right)\left( {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right) + \left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right)u,$$$ $$$y = \left( {\matrix{ 1 & 0 & 0 \cr } } \right)\left( {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right)$$$

where $$y$$ is the output and $$u$$ is the input. The system is controllable for

A
$${a_1} \ne 0,\,\,{a_2} = 0,\,\,{a_3} \ne 0$$
B
$${a_1} = 0,\,\,{a_2} \ne 0,\,\,{a_3} \ne 0$$
C
$${a_1} = 0,\,\,{a_2} \ne 0,\,\,{a_3} = 0$$
D
$${a_1} \ne 0,\,\,{a_2} \ne 0,\,\,{a_3} = 0$$
3
GATE EE 2012
MCQ (Single Correct Answer)
+1
-0.3
In the sum of products function $$f\,\left( {X,\,Y,\,Z} \right) = \sum \left( {2,\,\,3,\,\,4,\,\,5} \right),$$ the prime implicants are
A
$$\overline X Y,\,X\overline Y $$
B
$$\overline X Y,\,X\overline Y \overline Z ,X\overline Y Z$$
C
$$X\overline Y Z,\overline X YZ,X\overline Y $$
D
$$\,\overline X Y\overline Z ,\overline X YZ,X\overline Y \overline Z ,X\overline Y Z$$
4
GATE EE 2012
MCQ (Single Correct Answer)
+1
-0.3
The output $$Y$$ of a $$2$$ $$-$$ bit comparator is logic $$1$$ whenever the $$2$$-bit input $$A$$ is greater than the $$2$$-bit input $$B.$$ The number of combination for which the output is logic $$1$$, is
A
$$4$$
B
$$6$$
C
$$8$$
D
$$10$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12