1
GATE EE 2012
+2
-0.6
The transfer function of a compensator is given as $${G_c}\left( s \right) = {{s + a} \over {s + b}}$$

$${G_c}\left( s \right)$$ is a lead compensator if

A
$$a = 1,b = 2$$
B
$$a = 3,b = 2$$
C
$$a = -3,b = -1$$
D
$$a = 3,b = 1$$
2
GATE EE 2012
+2
-0.6
The transfer function of a compensator is given as $${G_c}\left( s \right) = {{s + a} \over {s + b}}$$

The phase of the above lead compensator is maximum at

A
$$\sqrt 2 \,rad/s$$
B
$$\sqrt 3 \,rad/s$$
C
$$\sqrt 6 \,rad/s$$
D
$$1/$$ $$\sqrt 3 \,rad/s$$
3
GATE EE 2012
+2
-0.6
The state variable description of an $$LTI$$ system is given by $$\left( {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr {\mathop {{x_3}}\limits^ \bullet } \cr } } \right) = \left( {\matrix{ 0 & {{a_1}} & 0 \cr 0 & 0 & {{a_2}} \cr {{a_3}} & 0 & 0 \cr } } \right)\left( {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right) + \left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right)u,$$$$$y = \left( {\matrix{ 1 & 0 & 0 \cr } } \right)\left( {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right)$$$

where $$y$$ is the output and $$u$$ is the input. The system is controllable for

A
$${a_1} \ne 0,\,\,{a_2} = 0,\,\,{a_3} \ne 0$$
B
$${a_1} = 0,\,\,{a_2} \ne 0,\,\,{a_3} \ne 0$$
C
$${a_1} = 0,\,\,{a_2} \ne 0,\,\,{a_3} = 0$$
D
$${a_1} \ne 0,\,\,{a_2} \ne 0,\,\,{a_3} = 0$$
4
GATE EE 2012
+1
-0.3
In the sum of products function $$f\,\left( {X,\,Y,\,Z} \right) = \sum \left( {2,\,\,3,\,\,4,\,\,5} \right),$$ the prime implicants are
A
$$\overline X Y,\,X\overline Y$$
B
$$\overline X Y,\,X\overline Y \overline Z ,X\overline Y Z$$
C
$$X\overline Y Z,\overline X YZ,X\overline Y$$
D
$$\,\overline X Y\overline Z ,\overline X YZ,X\overline Y \overline Z ,X\overline Y Z$$
GATE EE Papers
2024
2023
2022
2021
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
EXAM MAP
Medical
NEET