1
GATE EE 1995
MCQ (Single Correct Answer)
+1
-0.3
A monochromatic plane electromagnetic wave travels in vacuum in the position $$x$$ direction ($$x, y, z$$ system of coordinates). The electric and magnetic fields can be expressed as
A
$$\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = {H_0}\cos \left( {kx - \omega t} \right){\widehat a_z} \cr} $$
B
$$\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = {H_0}\cos \left( {kx - \omega t - {\pi \over 2}} \right){\widehat a_z} \cr} $$
C
$$\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = - {H_0}\cos \left( {kx - \omega t} \right){\widehat a_z} \cr} $$
D
$$\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = - {H_0}\cos \left( {kx - \omega t - {\pi \over 2}} \right){\widehat a_z} \cr} $$
2
GATE EE 1995
MCQ (Single Correct Answer)
+1
-0.3
The Laplace transform of $$f(t)$$ is $$F(s).$$ Given $$F\left( s \right) = {\omega \over {{s^2} + {\omega ^2}}},$$ the final value of $$f(t)$$ is __________.
A
initially
B
zero
C
one
D
none
3
GATE EE 1995
MCQ (Single Correct Answer)
+1
-0.3
The inverse of the matrix $$S = \left[ {\matrix{ 1 & { - 1} & 0 \cr 1 & 1 & 1 \cr 0 & 0 & 1 \cr } } \right]$$ is
A
$$\left[ {\matrix{ 1 & 0 & 1 \cr 0 & 0 & 0 \cr 0 & 1 & 1 \cr } } \right]$$
B
$$\left[ {\matrix{ 0 & 1 & 1 \cr { - 1} & { - 1} & 1 \cr 1 & 0 & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 2 & 2 & { - 2} \cr { - 2} & 2 & { - 2} \cr 0 & 2 & 2 \cr } } \right]$$
D
$$\left[ {\matrix{ {{1 \over 2}} & {{1 \over 2}} & {{{ - 1} \over 2}} \cr {{{ - 1} \over 2}} & {{1 \over 2}} & {{{ - 1} \over 2}} \cr 0 & 0 & 1 \cr } } \right]$$
4
GATE EE 1995
Subjective
+1
-0
Given the matrix $$A = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr { - 6} & { - 11} & { - 6} \cr } } \right].\,\,$$ Its eigen values are
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12