1
GATE EE 1995
MCQ (Single Correct Answer)
+1
-0.3
A monochromatic plane electromagnetic wave travels in vacuum in the position $$x$$ direction ($$x, y, z$$ system of coordinates). The electric and magnetic fields can be expressed as
A
$$\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = {H_0}\cos \left( {kx - \omega t} \right){\widehat a_z} \cr} $$
B
$$\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = {H_0}\cos \left( {kx - \omega t - {\pi \over 2}} \right){\widehat a_z} \cr} $$
C
$$\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = - {H_0}\cos \left( {kx - \omega t} \right){\widehat a_z} \cr} $$
D
$$\eqalign{ & \mathop E\limits^ \to \left( {x,t} \right) = {E_0}\cos \left( {kx - \omega t} \right)\,\,{\widehat a_y} \cr & \mathop H\limits^ \to \left( {x,t} \right) = - {H_0}\cos \left( {kx - \omega t - {\pi \over 2}} \right){\widehat a_z} \cr} $$
2
GATE EE 1995
MCQ (Single Correct Answer)
+1
-0.3
The Laplace transform of $$f(t)$$ is $$F(s).$$ Given $$F\left( s \right) = {\omega \over {{s^2} + {\omega ^2}}},$$ the final value of $$f(t)$$ is __________.
A
initially
B
zero
C
one
D
none
3
GATE EE 1995
MCQ (Single Correct Answer)
+1
-0.3
The inverse of the matrix $$S = \left[ {\matrix{ 1 & { - 1} & 0 \cr 1 & 1 & 1 \cr 0 & 0 & 1 \cr } } \right]$$ is
A
$$\left[ {\matrix{ 1 & 0 & 1 \cr 0 & 0 & 0 \cr 0 & 1 & 1 \cr } } \right]$$
B
$$\left[ {\matrix{ 0 & 1 & 1 \cr { - 1} & { - 1} & 1 \cr 1 & 0 & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 2 & 2 & { - 2} \cr { - 2} & 2 & { - 2} \cr 0 & 2 & 2 \cr } } \right]$$
D
$$\left[ {\matrix{ {{1 \over 2}} & {{1 \over 2}} & {{{ - 1} \over 2}} \cr {{{ - 1} \over 2}} & {{1 \over 2}} & {{{ - 1} \over 2}} \cr 0 & 0 & 1 \cr } } \right]$$
4
GATE EE 1995
Subjective
+1
-0
Given the matrix $$A = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr { - 6} & { - 11} & { - 6} \cr } } \right].\,\,$$ Its eigen values are
EXAM MAP