NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

WB JEE 2009

MCQ (Single Correct Answer)

The Rolle's theorem is applicable in the interval $$-$$1 $$\le$$ x $$\le$$ 1 for the function

A
f(x) = x
B
f(x) = x2
C
f(x) = 2x3 + 3
D
f(x) = |x|

Explanation

(a) f(x) = x

$$f'(x) = {{df(x)} \over {dx}} = 1$$ which is greater than zero

$$\therefore$$ f (x) is strictly increasing in [$$-$$1, 1].

So Rolle's theorem is not applicable.

(b) $$\because$$ f($$-$$1) = f(1) = 1

Also f(x) = x2 is continuous in [$$-$$1, 1] and differentiable in ($$-$$1, 1)

$$\therefore$$ Rolle's theorem is applicable.

(c) f(x) = 2x3 + 3 $$\Rightarrow$$ f'(x) = 6x2 > 0

$$\therefore$$ f(x) is strictly increasing in [$$-$$1, 1].

So, Rolle's theorem is not applicable.

(d) f(x) = |x| = x, x $$\ge$$ 0 and $$-$$x, x < 0

f(1) = f($$-$$1) = 1, also f(x) is continuous but f(x) is not differentiable at x = 0 $$\in$$ ($$-$$1, 1). So all conditions of Rolle's theorem is not satisfied.

2

WB JEE 2009

MCQ (Single Correct Answer)

A particle is moving in a straight line. At time t, the distance between the particle from its starting point is given by x = t $$-$$ 6t2 + t3. Its acceleration will be zero at

A
t = 1 unit time
B
t = 2 unit time
C
t = 3 unit time
D
t = 4 unit time

Explanation

$$x = t - 6{t^2} + {t^3}$$

velocity $$ = {{dx} \over {dt}} = 1 - 12t + 3{t^2}$$

acceleration $$ = {d \over {dt}}\left( {{{dx} \over {dt}}} \right) = - 12 + 6t$$

If acceleration is zero, then

$$ - 12 + 6t = 0 \Rightarrow t = 2$$.

3

WB JEE 2009

MCQ (Single Correct Answer)

The equation of the tangent to the conic $${x^2} - {y^2} - 8x + 2y + 11 = 0$$ at (2, 1) is

A
x + 2 = 0
B
2x + 1 = 0
C
x + y + 1 = 0
D
x $$-$$ 2 = 0

Explanation

Equation of conic section $${x^2} - {y^2} - 8x + 2y + 11 = 0$$

Differentiating w.r.t. x, we get

$$2x - 2yy' - 8 + 2y' = 0 \Rightarrow y' = {{4 - x} \over {1 - y}}$$

Slope of tangent at (2, 1) is $${(y')_{(2,1)}} = {{4 - 2} \over {1 - 1}} = {2 \over 0}$$

$$\therefore$$ Equation of tangent at (2, 1) is

$$y - 1 = {2 \over 0}(x - 2) \Rightarrow x - 2 = 0$$

4

WB JEE 2008

MCQ (Single Correct Answer)

A particle is projected vertically upwards and is at a height h after t1 seconds and again after t2 seconds then

A
$$h = g{t_1}{t_2}$$
B
$$h = {1 \over 2}g{t_1}{t_2}$$
C
$$h = {2 \over g}{t_1}{t_2}$$
D
$$h = \sqrt {g{t_1}{t_2}} $$

Explanation

Let the initial velocity is u

$$\therefore$$ $$h = ut - {1 \over 2}g{t^2}$$

$$ \Rightarrow g{t^2} - 2ut + 2h = 0$$

This is a quadratic in t,

let it has two roots t1 and t2

$$\therefore$$ $${t_1}{t_2} = {{2h} \over g}$$ ( Product of roots )

$$ \Rightarrow h = {1 \over 2}g{t_1}{t_2}$$.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12