Let $u+v+w=3, u, v, w \in \mathbb{R}$ and $f(x)=u x^2+v x+w$ be such that $f(x+y)=f(x)+f(y)+x y$, $\forall x, y \in \mathbb{R}$. Then $f(1)$ is equal to
If $f(x)$ and $g(x)$ are two polynomials such that $\phi(x)=f\left(x^3\right)+x g\left(x^3\right)$ is divisible by $x^2+x+1$, then
Let $$\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$\mathrm{f}(x)=\frac{\mathrm{e}^{|x|}-\mathrm{e}^{-x}}{\mathrm{e}^x+\mathrm{e}^{-x}}$$, then
For every real number $$x \neq-1$$, let $$\mathrm{f}(x)=\frac{x}{x+1}$$. Write $$\mathrm{f}_1(x)=\mathrm{f}(x)$$ & for $$\mathrm{n} \geq 2, \mathrm{f}_{\mathrm{n}}(x)=\mathrm{f}\left(\mathrm{f}_{\mathrm{n}-1}(x)\right)$$. Then $$\mathrm{f}_1(-2) \cdot \mathrm{f}_2(-2) \ldots . . \mathrm{f}_{\mathrm{n}}(-2)$$ must be