Let $\omega(\neq 1)$ be a cubic root of unity. Then the minimum value of the set $\left\{\mid a+b \omega+c \omega^2\right\}^2 ; a, b, c$ are distinct non-zero integers} equals
If $\left|Z_1\right|=\left|Z_2\right|=\left|Z_3\right|=1$ and $Z_1+Z_2+Z_3=0$, then the area of the triangle whose vertices are $Z_1, Z_2, Z_3$ is
If $$z_1$$ and $$z_2$$ be two roots of the equation $$z^2+a z+b=0, a^2<4 b$$, then the origin, $$\mathrm{z}_1$$ and $$\mathrm{z}_2$$ form an equilateral triangle if
If $$\cos \theta+i \sin \theta, \theta \in \mathbb{R}$$, is a root of the equation
$$a_0 x^n+a_1 x^{n-1}+\ldots .+a_{n-1} x+a_n=0, a_0, a_1, \ldots . a_n \in \mathbb{R}, a_0 \neq 0,$$
then the value of $$a_1 \sin \theta+a_2 \sin 2 \theta+\ldots .+a_n \sin n \theta$$ is