1
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $$\int {{{{x^{{1 \over 2}}}} \over {\sqrt {1 - {x^3}} }}dx = {2 \over 3}g(f(x)) + c} $$ ; then

(c denotes constant of integration)

A
$$f(x) = \sqrt x ,g(x) = {x^{{3 \over 2}}}$$
B
$$f(x) = {x^{{3 \over 2}}},g(x) = {\sin ^{ - 1}}x$$
C
$$f(x) = \sqrt x ,g(x) = {\sin ^{ - 1}}x$$
D
$$f(x) = {\sin ^{ - 1}}x,g(x) = {x^{{3 \over 2}}}$$
2
WB JEE 2021
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If $$\int {{{\sin 2x} \over {{{(a + b\cos x)}^2}}}dx} = \alpha \left[ {{{\log }_e}\left| {a + b\cos x} \right| + {a \over {a + b\cos x}}} \right] + c$$, then $$\alpha$$ is equal to
A
$${2 \over {{b^2}}}$$
B
$${2 \over {{a^2}}}$$
C
$$ - {2 \over {{b^2}}}$$
D
$$ - {2 \over {{a^2}}}$$
3
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
$$\int {{{f(x)\phi '(x) + \phi (x)f'(x)} \over {(f(x)\phi (x) + 1)\sqrt {f(x)\phi (x) - 1} }}dx = } $$
A
$${\sin ^{ - 1}} = \sqrt {{{f(x)} \over {\phi (x)}}} + c$$
B
$${\cos ^{ - 1}}\sqrt {{{(f(x))}^2} - {{(\phi (x))}^2}} + c$$
C
$$\sqrt 2 {\tan ^{ - 1}}\sqrt {{{f(x)\phi (x) - 1} \over 2}} + c$$
D
$$\sqrt 2 {\tan ^{ - 1}}\sqrt {{{f(x)\phi (x) + 1} \over 2}} + c$$
4
WB JEE 2019
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If $$\int {\cos x\log \left( {\tan {x \over 2}} \right)} dx$$ = $$\sin x\log \left( {\tan {x \over 2}} \right)$$ + f(x), then f(x) is equal to (assuming c is a arbitrary real constant).
A
c
B
c $$-$$ x
C
c + x
D
2x + c
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12