If the equation of one tangent to the circle with centre at (2, $$-$$1) from the origin is 3x + y = 0, then the equation of the other tangent through the origin is
The side AB of $$\Delta$$ABC is fixed and is of length 2a unit. The vertex moves in the plane such that the vertical angle is always constant and is $$\alpha$$. Let x-axis be along AB and the origin be at A. Then the locus of the vertex is
Two circles $${S_1} = p{x^2} + p{y^2} + 2g'x + 2f'y + d = 0$$ and $${S_2} = {x^2} + {y^2} + 2gx + 2fy + d' = 0$$ have a common chord PQ. The equation of PQ is
A straight line meets the co-ordinate axes at A and B. A circle is circumscribed about the triangle OAB, O being the origin. If m and n are the distances of the tangent to the circle at the origin from the points A and B respectively, the diameter of the circle is