1
WB JEE 2011
MCQ (Single Correct Answer)
+1
-0.25

If f(x + 2y, x $$-$$ 2y) = xy, then f(x, y) is equal to

A
$${1 \over 4}xy$$
B
$${1 \over 4}({x^2} - {y^2})$$
C
$${1 \over 8}({x^2} - {y^2})$$
D
$${1 \over 2}({x^2} + {y^2})$$
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $$\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$\mathrm{f}(x)=\frac{\mathrm{e}^{|x|}-\mathrm{e}^{-x}}{\mathrm{e}^x+\mathrm{e}^{-x}}$$, then

A
$$f$$ is both one-one and onto
B
$$f$$ is one-one but not onto
C
$$f$$ is onto but not one-one
D
$$f$$ is neither one-one nor onto
3
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

For every real number $$x \neq-1$$, let $$\mathrm{f}(x)=\frac{x}{x+1}$$. Write $$\mathrm{f}_1(x)=\mathrm{f}(x)$$ & for $$\mathrm{n} \geq 2, \mathrm{f}_{\mathrm{n}}(x)=\mathrm{f}\left(\mathrm{f}_{\mathrm{n}-1}(x)\right)$$. Then $$\mathrm{f}_1(-2) \cdot \mathrm{f}_2(-2) \ldots . . \mathrm{f}_{\mathrm{n}}(-2)$$ must be

A
$$\frac{2^{\mathrm{n}}}{1.3 .5 \ldots \ldots(2 \mathrm{n}-1)}$$
B
$$1$$
C
$$\frac{1}{2}\binom{2 n}{n}$$
D
$$\binom{2 \mathrm{n}}{\mathrm{n}}$$
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

The equation $$2^x+5^x=3^x+4^x$$ has

A
no real solution
B
only one non-zero real solution
C
infinitely many solutions
D
only three non-negative real solutions
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12