NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

WB JEE 2009

MCQ (Single Correct Answer)

If C is a point on the line segment joining A($$-$$3, 4) and B(2, 1) such that AC = 2BC, then the coordinate of C is

A
$$\left( {{1 \over 3},2} \right)$$
B
$$\left( {2,{1 \over 3}} \right)$$
C
(2, 7)
D
(7, 2)

Explanation

A($$-$$3, 4) and B(2, 1)

AC = 2BC

or, $${{AC} \over {BC}} = 2:1$$

Using section formula,

$$h = {{2\,.\,2 + 1\,.\,( - 3)} \over {2 + 1}} = {1 \over 3}$$

$$k = {{2\,.\,1 + 1\,.\,4} \over {2 + 1}} = 2$$

$$\therefore$$ Coordinates of C are $$\left( {{1 \over 3},2} \right)$$

2

WB JEE 2008

MCQ (Single Correct Answer)

The co-ordinates of the foot of perpendicular from (a, 0) on the line $$y = mx + {a \over m}$$ are

A
$$\left( {0,{a \over m}} \right)$$
B
$$\left( {0, - {a \over m}} \right)$$
C
$$\left( {{a \over m},0} \right)$$
D
$$\left( { - {a \over m},0} \right)$$

Explanation

Slope of given line = m

Equation of line is $$y = mx + {a \over m}$$

Slope of perpendicular line $$PQ = {{ - 1} \over m}$$

Equation of perpendicular line is

$$y - 0 = {{ - 1} \over m}(x - a)$$ or $$my = - x + a$$

$$y = - {1 \over m}x + {a \over m}$$ ..... (i)

$$y = mx + {a \over m}$$ ..... (ii)

Subtracting (i) from (ii)

$$\left( {m + {1 \over m}} \right)x = 0$$

Putting x = 0 in (i), $$y = {a \over m}$$

So point $$Q\left( {0,{a \over m}} \right)$$.

3

WB JEE 2008

MCQ (Single Correct Answer)

The distance between the lines $$5x - 12y + 65 = 0$$ and $$5x - 12y - 39 = 0$$ is

A
4
B
16
C
2
D
8

Explanation

Given equations of lines are $$5x - 12y + 65 = 0$$ and $$5x - 12y - 39 = 0$$

Since given lines are parallel

$$\therefore$$ Perpendicular distance $$ = {{|65 + 39|} \over {\sqrt {{{(5)}^2} + {{(12)}^2}} }}$$

$$ = {{104} \over {\sqrt {25 + 144} }} = {{104} \over {13}} = 8$$.

4

WB JEE 2008

MCQ (Single Correct Answer)

One possible condition for the three points (a, b), (b, a) and (a2, $$-$$ b2) to be collinear is

A
a $$-$$ b = 2
B
a + b = 2
C
a = 1 + b
D
a = 1 $$-$$ b

Explanation

Let A(a, b), B(b, a), C(a2, $$-$$ b2) be three points which are collinear.

$$\therefore$$ $$\left| {\matrix{ a & b & 1 \cr b & a & 1 \cr {{a^2}} & { - {b^2}} & 1 \cr } } \right| = 0$$

$$ \Rightarrow 1( - {b^3} - {a^3}) - 1( - a{b^2} - {a^2}b) + 1({a^2} - {b^2}) = 0$$

$$ \Rightarrow - ({a^3} + {b^3}) + ab(a + b) + (a + b)(a - b) = 0$$

$$ = - (a + b)({a^2} + {b^2} - ab) + ab(a + b) + (a + b)(a - b) = 0$$

$$ \Rightarrow (a + b)( - {a^2} - {b^2} + ab + ab + a - b) = 0$$

$$ \Rightarrow (a + b)( - {a^2} - {b^2} + 2ab + a - b) = 0$$

$$ \Rightarrow (a + b)( - ({a^2} + {b^2} - 2ab) + (a - b)) = 0$$

$$ \Rightarrow (a + b)( - {(a - b)^2} + (a - b)) = 0$$

$$ \Rightarrow (a + b)(a - b)( - (a - b) + 1) = 0$$

$$ \Rightarrow ({a^2} - {b^2})(1 - a + b) = 0$$

$$\therefore$$ either $${a^2} - {b^2} = 0$$ or $$1 - a + b = 0 \Rightarrow a = 1 + b$$.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12