1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two tangents to the circle $x^2+y^2=4$ at the points A and B meet at $\mathrm{P}(-4,0)$. Then the area of quadrilateral PAOB, where ' $O$ ' is the origin is

A

$8 \sqrt{3}$ sq. units

B

$\frac{4}{\sqrt{3}}$ sq. units

C

$4 \sqrt{3}$ sq. units

D

$\sqrt{3}$ sq. units

2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The lines $\frac{6 x-6}{18}=\frac{y+1}{3}=\frac{z-1}{5} \quad$ and $\frac{3 x+6}{12}=\frac{y-1}{3}=\frac{z+1}{2}$ are $\ldots$

A

intersecting at point $(1,-1,2)$

B

intersecting at right angles

C

do not intersect

D

intersecting at point $(3,1,-1)$

3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int x^2 \cos x d x= $$

A

$x^2 \sin x+2 x \cos x-2 \sin x+\mathrm{c}$, where c is the constant of integration

B

$x^2 \sin x-2 x \cos x-2 \sin x+\mathrm{c}$, where c is the constant of integration

C

$x^2 \sin x-2 x \cos x+2 \sin x+\mathrm{c}$, where c is the constant of integration

D

$x^2 \sin x+2 x \cos x+2 \sin x+\mathrm{c}$, where $c$ is the constant of integration

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $X$ has the following probability distribution :

$$ \begin{array}{|l|c|c|c|c|} \hline \mathrm{X}=x & 1 & 2 & 3 & 4 \\ \hline \mathrm{P}(\mathrm{X}=x) & 0.1 & 0.2 & 0.3 & 0.4 \\ \hline \end{array} $$

The mean and standard deviation of $X$ are respectively

A
2 and 3
B
3 and 1
C
3 and $\sqrt{2}$
D
2 and 1
MHT CET Papers
EXAM MAP