1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\mathrm{d} x}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}=\mathrm{A} x^{\frac{1}{2}}+\mathrm{B} x^{\frac{1}{3}}+\mathrm{C} x^{\frac{1}{6}}+\mathrm{D} \log \left(x^{\frac{1}{6}}+1\right)+\mathrm{k} $$

(where k is the integration constant) then values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are respectively,

A

$2,-3,6,-6$

B

$2,3,-6,6$

C

$2,-3,-6,6$

D

$-2,-3,6,6$

2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The probability that a non leap year selected at random will contain 52 Saturdays or 53 Sundays is

A

$\frac{1}{7}$

B

$\frac{6}{7}$

C

$\frac{2}{7}$

D

$\frac{5}{7}$

3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The population of towns A and B increase at the rate proportional to their population present at that time. At the end of the year 1984, the population of both the towns was 20,000 . At the end of the year 1989, the population of town A was 25,000 and that of town B was 28,000 . The difference of populations of towns A and B at the end of 1994 was

A

5950

B

8000

C

7950

D

6950

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The vectors $\bar{a}, \bar{b}$ and $\bar{c}$ are such that $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=4,|\overline{\mathrm{c}}|=4$. If the projection of $\overline{\mathrm{b}}$ on $\overline{\mathrm{a}}$ is equal to projection of $\overline{\mathrm{c}}$ on $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is perpendicular to $\overline{\mathrm{c}}$, then the value of $|\overline{\mathrm{a}}+\overline{\mathrm{b}}-\overline{\mathrm{c}}|$ is

A
5
B
36
C
6
D
25
MHT CET Papers
EXAM MAP