1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let z be the complex number such that $|z|+z=3+i$ where $i=\sqrt{-1}$, then $|z|=$

A

$\frac{\sqrt{34}}{3}$

B

$\frac{5}{3}$

C

$\frac{\sqrt{41}}{4}$

D

$\frac{5}{4}$

2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of the differential equation $(1+x) \frac{\mathrm{d} y}{\mathrm{~d} x}-x y=1-x$ is

A

$y(1+x)=x+\mathrm{ce}^x$, where c is the constant of integration

B

$\quad y(1+x)=\mathrm{ce}^x$, where c is the constant of integration

C

$y(1-x)=x-\mathrm{ce}^x$, where c is the constant of integration

D

$y(1+x)=x$, where c is the constant of integration

3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\mathrm{d} x}{\sin ^2 x \cos ^2 x}= $$

A

$\tan x+\cot x+\mathrm{c}$, where c is the constant of integration.

B

$\tan x-\cot x+\mathrm{c}$, where c is the constant of integration.

C

$\tan x \cot x+\mathrm{c}$, where c is the constant of integration.

D

$\tan x-\cot 2 x+\mathrm{c}$, , where c is the constant of integration.

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the angles $\mathrm{A}, \mathrm{B}$ and C of a triangle are in A.P. and if $\mathrm{a}, \mathrm{b}$ and c denote the length of the sides opposite to $\mathrm{A}, \mathrm{B}$ and C respectively, then the value of $\frac{a}{b} \sin 2 B+\frac{b}{a} \sin 2 A$ is

A
$\sqrt{3}$
B
$\frac{\sqrt{3}}{2}$
C
$\frac{1}{\sqrt{3}}$
D
$\frac{1}{2}$
MHT CET Papers
EXAM MAP