A random variable $X$ has the following probability distribution :
$$ \begin{array}{|l|c|c|c|c|} \hline \mathrm{X}=x & 1 & 2 & 3 & 4 \\ \hline \mathrm{P}(\mathrm{X}=x) & 0.1 & 0.2 & 0.3 & 0.4 \\ \hline \end{array} $$
The mean and standard deviation of $X$ are respectively
The values of $x$ for which the angle between the vectors $\overline{\mathrm{a}}=2 x^2 \hat{\mathrm{i}}+4 x \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+x \hat{\mathrm{k}}$ is obtuse, are
If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are three coplanar vectors such that $|\overline{\mathrm{a}}|=1,|\overline{\mathrm{~b}}|=2, \overline{\mathrm{~b}} \cdot \overline{\mathrm{c}}=8$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $45^{\circ}$ then the value of $|\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})|$ is
If $u=\log (\sqrt{x-1}-\sqrt{x+1})$ and $v=\sqrt{x+1}+\sqrt{x-1}$ then $\frac{d u}{d v}=\ldots$.