1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $p^3=q^4=r^6=t^7=s^2$, then $\log _t(p q r s)=\ldots \ldots$

A

$\frac{168}{5}$

B

28

C

$\frac{31}{4}$

D

$\frac{35}{4}$

2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the curve passing through the point $(0,2)$ given that the sum of the ordinate and abscissa of any point exceeds the slope of the tangent to the curve at that point by 5 is

A

$y=x-4-2 \mathrm{e}^x$

B

$y=4-x-2 \mathrm{e}^x$

C

$y=4+x-2 \mathrm{e}^x$

D

$y=4-x+2 \mathrm{e}^x$

3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let z be the complex number such that $|z|+z=3+i$ where $i=\sqrt{-1}$, then $|z|=$

A

$\frac{\sqrt{34}}{3}$

B

$\frac{5}{3}$

C

$\frac{\sqrt{41}}{4}$

D

$\frac{5}{4}$

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of the differential equation $(1+x) \frac{\mathrm{d} y}{\mathrm{~d} x}-x y=1-x$ is

A

$y(1+x)=x+\mathrm{ce}^x$, where c is the constant of integration

B

$\quad y(1+x)=\mathrm{ce}^x$, where c is the constant of integration

C

$y(1-x)=x-\mathrm{ce}^x$, where c is the constant of integration

D

$y(1+x)=x$, where c is the constant of integration

MHT CET Papers
EXAM MAP