1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int\limits_0^1 x\left|x-\frac{1}{2}\right| \mathrm{d} x= $$

A

$\frac{1}{2}$

B

$\frac{1}{12}$

C

$\frac{1}{8}$

D

$\frac{1}{16}$

2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=[x(x-2)]^2$ is increasing in the set

A

$(-\infty, 0) \cup(2, \infty)$

B

$(-\infty, 1)$

C

$(1,2)$

D

$(0,1) \cup(2, \infty)$

3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $p, q, r, s$ are statements, where, $\mathrm{p}: \mathrm{A}^2-\mathrm{B}^2=(\mathrm{A}-\mathrm{B})(\mathrm{A}+\mathrm{B}) ; \mathrm{A}, \mathrm{B}$ are matrices, $A B \neq B A$

q: $5 \leq 5$

r: ${ }^8 \mathrm{C}_1+{ }^8 \mathrm{C}_2+{ }^8 \mathrm{C}_3+\ldots \ldots \ldots . .+{ }^8 \mathrm{C}_8=256$

s: Maximum value of ${ }^8 \mathrm{C}_{\mathrm{r}}$ is 70 then the statement from the following having truth value true is ….

A

$(\mathrm{p} \wedge \sim \mathrm{r}) \vee(\sim \mathrm{q} \wedge \sim \mathrm{s})$

B

$(\mathrm{p} \vee \sim \mathrm{q}) \leftrightarrow(\sim \mathrm{r} \rightarrow \mathrm{s})$

C

$(\mathrm{p} \leftrightarrow \mathrm{q}) \wedge(\sim \mathrm{p} \vee \sim \mathrm{q})$

D

$\quad(\mathrm{s} \vee \sim \mathrm{p}) \leftrightarrow(\sim \mathrm{p} \wedge \sim \mathrm{r})$

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The minimum value of $a x+b y$ where $x y=c^2$ is

A

$2 c \sqrt{a b}$

B

$2 \mathrm{ab} \sqrt{\mathrm{c}}$

C

$-2 c \sqrt{a b}$

D

$2 \mathrm{c}(\mathrm{ab})$

MHT CET Papers
EXAM MAP