1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The vectors $\bar{a}, \bar{b}$ and $\bar{c}$ are such that $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=4,|\overline{\mathrm{c}}|=4$. If the projection of $\overline{\mathrm{b}}$ on $\overline{\mathrm{a}}$ is equal to projection of $\overline{\mathrm{c}}$ on $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is perpendicular to $\overline{\mathrm{c}}$, then the value of $|\overline{\mathrm{a}}+\overline{\mathrm{b}}-\overline{\mathrm{c}}|$ is

A
5
B
36
C
6
D
25
2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two tangents to the circle $x^2+y^2=4$ at the points A and B meet at $\mathrm{P}(-4,0)$. Then the area of quadrilateral PAOB, where ' $O$ ' is the origin is

A

$8 \sqrt{3}$ sq. units

B

$\frac{4}{\sqrt{3}}$ sq. units

C

$4 \sqrt{3}$ sq. units

D

$\sqrt{3}$ sq. units

3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The lines $\frac{6 x-6}{18}=\frac{y+1}{3}=\frac{z-1}{5} \quad$ and $\frac{3 x+6}{12}=\frac{y-1}{3}=\frac{z+1}{2}$ are $\ldots$

A

intersecting at point $(1,-1,2)$

B

intersecting at right angles

C

do not intersect

D

intersecting at point $(3,1,-1)$

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int x^2 \cos x d x= $$

A

$x^2 \sin x+2 x \cos x-2 \sin x+\mathrm{c}$, where c is the constant of integration

B

$x^2 \sin x-2 x \cos x-2 \sin x+\mathrm{c}$, where c is the constant of integration

C

$x^2 \sin x-2 x \cos x+2 \sin x+\mathrm{c}$, where c is the constant of integration

D

$x^2 \sin x+2 x \cos x+2 \sin x+\mathrm{c}$, where $c$ is the constant of integration

MHT CET Papers
EXAM MAP