1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The values of $x$ for which the angle between the vectors $\overline{\mathrm{a}}=2 x^2 \hat{\mathrm{i}}+4 x \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+x \hat{\mathrm{k}}$ is obtuse, are

A

$0

B

$1

C

$1 \leq x \leq 2$

D

$-1

2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are three coplanar vectors such that $|\overline{\mathrm{a}}|=1,|\overline{\mathrm{~b}}|=2, \overline{\mathrm{~b}} \cdot \overline{\mathrm{c}}=8$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $45^{\circ}$ then the value of $|\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})|$ is

A
8
B
$\sqrt{2}$
C
2
D
5
3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $u=\log (\sqrt{x-1}-\sqrt{x+1})$ and $v=\sqrt{x+1}+\sqrt{x-1}$ then $\frac{d u}{d v}=\ldots$.

A

u

B

v

C

$\frac{-1}{\mathrm{u}}$

D

$\frac{-1}{\mathrm{v}}$

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{1}$ intersects the XY plane and the YZ plane at points A and B respectively. The equation of line through the points A and B is

A

$[\overline{\mathrm{r}}-(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+0 \hat{\mathrm{k}})] \times\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}\right)=\overline{0}$

B

$[\overline{\mathrm{r}}+(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+0 \hat{\mathrm{k}})] \times\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}+\frac{1}{2} \hat{\mathrm{k}}\right)=\overline{0}$

C

$\overline{\mathrm{r}}=(-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+0 \hat{\mathrm{k}})+\lambda\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}\right)$

D

$\quad \overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}})+\lambda\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}\right)$

MHT CET Papers
EXAM MAP