1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{1}$ intersects the XY plane and the YZ plane at points A and B respectively. The equation of line through the points A and B is

A

$[\overline{\mathrm{r}}-(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+0 \hat{\mathrm{k}})] \times\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}\right)=\overline{0}$

B

$[\overline{\mathrm{r}}+(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+0 \hat{\mathrm{k}})] \times\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}+\frac{1}{2} \hat{\mathrm{k}}\right)=\overline{0}$

C

$\overline{\mathrm{r}}=(-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+0 \hat{\mathrm{k}})+\lambda\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}\right)$

D

$\quad \overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}})+\lambda\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}\right)$

2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A fair $n$ faced die is rolled repeatedly until a number less than $n$ appears. If the mean of the number of tosses required is $\frac{n}{9}$, then $\mathrm{n}=($ where $\mathrm{n} \in \mathbb{N})$

A

4

B

6

C

8

D

10

3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A fair coin is tossed a fixed number of times. If the probability of getting 5 tails is same as the probability of getting 7 tails, then the probability of getting 3 tails is

A

$\frac{44}{2^{13}}$

B

$\frac{55}{2^{10}}$

C

$\frac{55}{2^{13}}$

D

$\frac{44}{2^{10}}$

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In the above figure, P divides AC in the ratio $3: 4$ and Q divides BC in the ratio $4: 3$. Then M divides AQ in the ratio

A

$15: 14$

B

$29: 13$

C

$21: 16$

D

$28: 9$

MHT CET Papers
EXAM MAP