1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

The frequencies for series limit of Balmer and Paschen series are ' $\mathrm{V}_1$ ' and ' $\mathrm{V}_3$ ' respectively. If frequency of first line of Balmer series ' $\mathrm{V}_2$ ' then the relation between $V_1, V_2$ and $V_3$ is

A

$\mathrm{v}_1-\mathrm{v}_3=2 \mathrm{v}_1$

B

$v_1+v_2=v_3$

C

$\mathrm{v}_1-\mathrm{v}_2=\mathrm{v}_3$

D

$v_1+v_3=v_2$

2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

Two cylinders A and B fitted with piston contain equal amount of an ideal diatomic gas at temperature T K. The piston of cylinder A is free to move while that of cylinder $B$ is held fixed. The same amount of heat is given to the gas in each cylinder. If the rise of temperature of the gas in A is $\mathrm{dT}_{\mathrm{A}}$, then the rise in temperature of the gas in B is $\left(\gamma=\frac{C_p}{C_v}\right)$

A
$\frac{\mathrm{dT}_{\mathrm{A}}}{2}$
B
$\frac{\mathrm{dT}_{\mathrm{A}}}{\gamma}$
C
$\quad \gamma d T_A$
D
$\quad 2 \mathrm{dT}_{\mathrm{A}}$
3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

In a certain 2 -inputs logic gate, when inputs $\mathrm{A}=0$ and $\mathrm{B}=0$, then output $\mathrm{C}=1$. And also when inputs $\mathrm{A}=0, \mathrm{~B}=1$, then again output $\mathrm{C}=1$. The gate must be

A

OR

B

AND

C

NAND

D

NOR

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

The vector sum of two forces $\vec{A}$ and $\vec{B}$ is perpendicular to their vector difference. Hence forces $\vec{A}$ and $\vec{B}$ are

A

perpendicular to each other.

B

parallel to each other.

C

unequal in magnitude.

D

equal in magnitude.

MHT CET Papers
EXAM MAP