1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all circles touching the Y -axis at the origin and centre on the X -axis is

A
$x^2+y^2+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
B
$x^2-y^2+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
C
$2 x^2+y^2+x y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
D
$x^2-2 y^2+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area bounded by the curve $x^2=8 y$ and the straight line $x-8 y+2=0$ is

A
$\frac{9}{8}$ sq. units
B
$\frac{15}{16}$ sq. units
C
$\frac{9}{16}$ sq. units
D
$\frac{15}{8}$ sq. units
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC with usual notations, $\cot \frac{\mathrm{A}}{2}+\cot \frac{\mathrm{B}}{2}+\cot \frac{\mathrm{C}}{2}=$

A
$\frac{\mathrm{s}^2}{\Delta}$, where $\Delta$ is the area of the triangle ABC .
B
$\frac{s}{\Delta}$, where $\Delta$ is the area of the triangle ABC .
C
$\frac{\Delta}{\mathrm{s}}$, where $\Delta$ is the area of the triangle ABC .
D
$\Delta$, where $\Delta$ is the area of the triangle ABC .
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area of the rectangle having vertices $\mathrm{P}, \quad \mathrm{Q}, \quad \mathrm{R}, \quad \mathrm{S}$ with position vectors $-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}},-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ respectively is

A
1 square unit
B
2 square units
C
3 square units
D
4 square units
MHT CET Papers
EXAM MAP