If $\mathrm{f}(x)=\frac{10^x+7^x-14^x-5^x}{1-\cos x}, x \neq 0$ is continuous at $x=0$, then the value of $\mathrm{f}(0)$ is
If A and B are non-singular matrices of order 2 such that $\quad(A B)^{-1}=\frac{1}{6}\left[\begin{array}{cc}-1 & -3 \\ 2 & 3\end{array}\right] \quad$ and $A^{-1}=\frac{1}{3}\left[\begin{array}{cc}4 & 3 \\ -1 & 0\end{array}\right]$ then $B^{-1}=$
If $\sin \mathrm{A}+\sin \mathrm{B}=x$ and $\cos \mathrm{A}+\cos \mathrm{B}=y$, then $\sin (A+B)=$
Let mean and standard deviation of probability distribution
$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X}=x & -3 & 0 & 1 & \alpha \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{1}{4} & \mathrm{~K} & \frac{1}{4} & \frac{1}{3} \\ \hline \end{array} $$
be $\mu$ and $\sigma$ respectively and if $\sigma-\mu=2$ then $\sigma=$