1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{10^x+7^x-14^x-5^x}{1-\cos x}, x \neq 0$ is continuous at $x=0$, then the value of $\mathrm{f}(0)$ is

A
$\log 2\left[\log \left(\frac{5}{7}\right)\right]$
B
$\log 4\left[\log \left(\frac{5}{7}\right)\right]$
C
$\quad \log 2\left[\log \left(\frac{7}{5}\right)\right]$
D
$\quad \log 4\left[\log \left(\frac{7}{5}\right)\right]$
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If A and B are non-singular matrices of order 2 such that $\quad(A B)^{-1}=\frac{1}{6}\left[\begin{array}{cc}-1 & -3 \\ 2 & 3\end{array}\right] \quad$ and $A^{-1}=\frac{1}{3}\left[\begin{array}{cc}4 & 3 \\ -1 & 0\end{array}\right]$ then $B^{-1}=$

A
$\frac{1}{2}\left[\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right]$
B
$\frac{1}{2}\left[\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right]$
C
$\frac{1}{2}\left[\begin{array}{cc}-1 & 3 \\ 1 & 2\end{array}\right]$
D
$\frac{1}{6}\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin \mathrm{A}+\sin \mathrm{B}=x$ and $\cos \mathrm{A}+\cos \mathrm{B}=y$, then $\sin (A+B)=$

A
$\frac{2 x y}{x^2+y^2}$
B
$\frac{x y}{x^2+y^2}$
C
$\frac{2 x y}{y^2-x^2}$
D
$\frac{x y}{y^2-x^2}$
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let mean and standard deviation of probability distribution

$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X}=x & -3 & 0 & 1 & \alpha \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{1}{4} & \mathrm{~K} & \frac{1}{4} & \frac{1}{3} \\ \hline \end{array} $$

be $\mu$ and $\sigma$ respectively and if $\sigma-\mu=2$ then $\sigma=$

A
$\frac{3}{2}$
B
$\frac{5}{2}$
C
$\frac{7}{2}$
D

$\frac{9}{2}$

MHT CET Papers
EXAM MAP