1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle \mathrm{ABC}$, with usual notations, if $\cos \frac{B}{2}=\sqrt{\frac{c+a}{2 a}}$, then $a^2=$

A
$\mathrm{b}^2-\mathrm{c}^2$
B
$\mathrm{b}+\mathrm{c}$
C
$\mathrm{b}^2+\mathrm{c}^2$
D
$\mathrm{b}-\mathrm{c}$
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The joint equation of two lines passing through $(-2,3)$ and parallel to the bisectors of the angle between the co-ordinate axes is

A
$x^2-y^2+4 x+6 y-4=0$
B
$x^2+y^2+4 x+6 y-5=0$
C
$x^2-y^2+4 x+6 y-5=0$
D
$x^2+y^2+4 x+6 y+4=0$
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the circle with centre at origin pass through the vertices of an equilateral triangle ABC . If $A \equiv(2,4)$, then the length of the median through A is

A
$2 \sqrt{5}$ units
B
$3 \sqrt{5}$ units
C
$4 \sqrt{5}$ units
D
$6 \sqrt{5}$ units
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}=\hat{i}+\hat{j}+\hat{k}, \bar{b}$ and $\bar{c}=\hat{j}-\hat{k}$ be three vectors such that $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{c}}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=1$. If the length of projection vector of the vector $\overline{\mathrm{b}}$ on the vector $\overline{\mathrm{a}} \times \overline{\mathrm{c}}$ is $l$, then the value of $3 l^2$ is

A
1
B
2
C
4
D
6
MHT CET Papers
EXAM MAP