1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=3 x+10, \mathrm{~g}(x)=x^2-1$, then $(\mathrm{fog})^{-1}(x)=$

A
$\left(\frac{x-7}{3}\right)$
B
$\left(\frac{x-7}{3}\right)^{\frac{1}{2}}$
C
$\left(\frac{x-7}{3}\right)^{\frac{1}{3}}$
D
$\left(\frac{3}{x-7}\right)^{\frac{3}{2}}$
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A family consisting of a mother, father and their 8 children ( 4 boys and 4 girls) are to be seated at a round table in a party. How many ways can this be done if the mother and father sit together and the males and females alternate?

A
567
B
765
C
657
D
576
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}, \bar{b}, \bar{c}$ are three vectors such that $|\overrightarrow{\mathrm{a}}|=\sqrt{31}, 4|\overrightarrow{\mathrm{~b}}|=|\overrightarrow{\mathrm{c}}|=2$ and $2(\overline{\mathrm{a}} \times \overline{\mathrm{b}})=3(\overline{\mathrm{c}} \times \overline{\mathrm{a}})$ and if the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{2 \pi}{3}$ then $\left|\frac{\bar{a} \times \bar{c}}{\bar{a} \cdot \bar{b}}\right|^2=$

A
1
B
2
C
3
D
11
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}=2 \hat{i}+\hat{j}+\hat{k}, \bar{b}=\hat{i}+2 \hat{j}-\hat{k}$ and vector $\bar{c}$ be coplanar. If $\bar{c}$ is perpendicular to $\bar{a}$, then $\bar{c}$ is

A
$-\hat{\mathrm{i}}+2 \hat{\mathrm{k}}$
B
$-\hat{i}+\hat{j}+\hat{k}$
C
$\hat{\mathrm{i}}-2 \hat{\mathrm{j}}$
D
$-\hat{\mathrm{j}}+\hat{\mathrm{k}}$
MHT CET Papers
EXAM MAP