Which of the following is the negation of the statement " For all M>0, there exist $x \in \mathrm{~s}$ such that $x \geqslant \mathrm{M}^{\prime \prime}$
The equation of the line passing through the point of intersection of $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ and also through the point ( $2,1,-2$ ) is
A particle moves along a curve $y=\frac{2 x^3-1}{3}$. The points on the curve at which the $y$ co-ordinate is changing 18 times the $x$ co-ordinate are
The equation of motion of the particle is $\mathrm{s}=\mathrm{at}^2+\mathrm{bt}+\mathrm{c}$. If the displacement after 1 second is 20 m , velocity after 2 seconds is $30 \mathrm{~m} /$ seconds and the acceleration is $10 \mathrm{~m} /$ seconds $^2$, then