1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\tan ^2\left(\sec ^{-1} 4\right)+\cot ^2\left(\operatorname{cosec}^{-1} 3\right)$ is

A
15
B
25
C
23
D
7
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, if $\mathrm{a}=5, \mathrm{~b}=4, \cos (\mathrm{~A}-\mathrm{B})=\frac{31}{32}$, then $\mathrm{c}=$

A
6
B
7
C
5
D
2
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Which of the following is the negation of the statement " For all M>0, there exist $x \in \mathrm{~s}$ such that $x \geqslant \mathrm{M}^{\prime \prime}$

A
$\quad \exists \mathrm{M}>0$ such that $x \geqslant \mathrm{M}$ for all $x \in \mathrm{~s}$
B
$\quad \exists \mathrm{M}>0, \exists x \in \mathrm{~s}$ such that $x \geqslant \mathrm{M}$
C
$\exists \mathrm{M}>0$ such that $x<\mathrm{M}$ for all $x \in \mathrm{~s}$
D
$\quad \exists \mathrm{M}>0$, there exist $x \in \mathrm{~s}$ such that $x<\mathrm{M}$
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the line passing through the point of intersection of $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ and also through the point ( $2,1,-2$ ) is

A

$\overline{\mathrm{r}}=(-\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$

B

$\overline{\mathrm{r}}=(-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$

C

$\frac{x+1}{3}=\frac{y+1}{2}=\frac{z+1}{-1}$

D

$\frac{x-1}{3}=\frac{y-1}{2}=\frac{z+1}{1}$

MHT CET Papers
EXAM MAP