1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area of the rectangle having vertices $\mathrm{P}, \quad \mathrm{Q}, \quad \mathrm{R}, \quad \mathrm{S}$ with position vectors $-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}},-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ respectively is

A
1 square unit
B
2 square units
C
3 square units
D
4 square units
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int_0^1 \tan ^{-1}\left(1-x+x^2\right) \mathrm{d} x$ is

A
$\frac{\pi}{2}-\log 2$
B
$\frac{\pi}{2}+\log 2$
C
$\quad \log 2$
D
0
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_3^5 \frac{\sqrt{x} \mathrm{~d} x}{\sqrt{8-x}+\sqrt{x}}= $$

A
0
B
1
C
2
D
3
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\mathrm{d} x}{\sqrt{x}+x}= $$

A
$\log \sqrt{x}+c$, where $c$ is the constant of integration.
B
$\quad \log (\sqrt{x}+x)+\mathrm{c}$, where c is the constant of integration.
C
$\quad \log (1+\sqrt{x})+\mathrm{c}$, where c is the constant of integration.
D
$\quad 2 \log (1+\sqrt{x})+\mathrm{c}$, where c is the constant of integration.
MHT CET Papers
EXAM MAP