1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}=\hat{i}+\hat{j}+\hat{k}, \bar{b}$ and $\bar{c}=\hat{j}-\hat{k}$ be three vectors such that $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{c}}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=1$. If the length of projection vector of the vector $\overline{\mathrm{b}}$ on the vector $\overline{\mathrm{a}} \times \overline{\mathrm{c}}$ is $l$, then the value of $3 l^2$ is

A
1
B
2
C
4
D
6
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $(1,2)$ from the line $x+y=0$ measured parallel to the line $3 x-y=2$ is

A
$\frac{3 \sqrt{2}}{8}$ units
B
$\frac{3 \sqrt{10}}{4}$ units
C
10 units
D
$5 \sqrt{5}$ units
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 2} \frac{x+3 x^2+5 x^3+7 x^4-166}{x-2}= $$

A
267
B
167
C
287
D
297
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{10^x+7^x-14^x-5^x}{1-\cos x}, x \neq 0$ is continuous at $x=0$, then the value of $\mathrm{f}(0)$ is

A
$\log 2\left[\log \left(\frac{5}{7}\right)\right]$
B
$\log 4\left[\log \left(\frac{5}{7}\right)\right]$
C
$\quad \log 2\left[\log \left(\frac{7}{5}\right)\right]$
D
$\quad \log 4\left[\log \left(\frac{7}{5}\right)\right]$
MHT CET Papers
EXAM MAP