1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A fair coin is tossed 100 times. The chance of getting a head even number of times is

A
$\frac{1}{8}$
B
$\frac{3}{8}$
C
$\frac{1}{2}$
D
$\frac{3}{4}$
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}$ are vectors such that $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}} \times \overline{\mathrm{d}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}$ and if $\left|\begin{array}{ll}\overline{\mathrm{a}} \cdot \overline{\mathrm{c}} & \overline{\mathrm{b}} \cdot \overline{\mathrm{c}} \\ \overline{\mathrm{a}} \cdot \overline{\mathrm{d}} & \overline{\mathrm{b}} \cdot \overline{\mathrm{d}}\end{array}\right|=0$, then $\lambda=$

A
6
B
-6
C
12
D
-12
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle \mathrm{ABC}$, with usual notations, if $\cos \frac{B}{2}=\sqrt{\frac{c+a}{2 a}}$, then $a^2=$

A
$\mathrm{b}^2-\mathrm{c}^2$
B
$\mathrm{b}+\mathrm{c}$
C
$\mathrm{b}^2+\mathrm{c}^2$
D
$\mathrm{b}-\mathrm{c}$
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The joint equation of two lines passing through $(-2,3)$ and parallel to the bisectors of the angle between the co-ordinate axes is

A
$x^2-y^2+4 x+6 y-4=0$
B
$x^2+y^2+4 x+6 y-5=0$
C
$x^2-y^2+4 x+6 y-5=0$
D
$x^2+y^2+4 x+6 y+4=0$
MHT CET Papers
EXAM MAP