1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC with usual notations, $\cot \frac{\mathrm{A}}{2}+\cot \frac{\mathrm{B}}{2}+\cot \frac{\mathrm{C}}{2}=$

A
$\frac{\mathrm{s}^2}{\Delta}$, where $\Delta$ is the area of the triangle ABC .
B
$\frac{s}{\Delta}$, where $\Delta$ is the area of the triangle ABC .
C
$\frac{\Delta}{\mathrm{s}}$, where $\Delta$ is the area of the triangle ABC .
D
$\Delta$, where $\Delta$ is the area of the triangle ABC .
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area of the rectangle having vertices $\mathrm{P}, \quad \mathrm{Q}, \quad \mathrm{R}, \quad \mathrm{S}$ with position vectors $-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}},-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ respectively is

A
1 square unit
B
2 square units
C
3 square units
D
4 square units
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int_0^1 \tan ^{-1}\left(1-x+x^2\right) \mathrm{d} x$ is

A
$\frac{\pi}{2}-\log 2$
B
$\frac{\pi}{2}+\log 2$
C
$\quad \log 2$
D
0
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_3^5 \frac{\sqrt{x} \mathrm{~d} x}{\sqrt{8-x}+\sqrt{x}}= $$

A
0
B
1
C
2
D
3
MHT CET Papers
EXAM MAP