1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int\left(\frac{x-3}{x^2+9}\right)^2 d x= $$

A
$\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)-\frac{3}{x^2+9}+\mathrm{c}$, where c is the constant of integration.
B
$\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)-\frac{1}{x^2+9}+c$, where $c$ is the constant of integration.
C
$\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)+\frac{3}{x^2+9}+c$, where $c$ is the constant of integration.
D
$\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)-\frac{1}{x^2+9}+c$, where $c$ is the constant of integration.
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The point on the curve $4 y^2-4 y+2 x-1=0$ at which the tangent becomes parallel to Y -axis is

A
$\left(1, \frac{1}{2}\right)$
B
$\left(\frac{1}{2}, 1\right)$
C
$\left(-1,-\frac{1}{2}\right)$
D
$\left(\frac{1}{2}, 0\right)$
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\tan ^2\left(\sec ^{-1} 4\right)+\cot ^2\left(\operatorname{cosec}^{-1} 3\right)$ is

A
15
B
25
C
23
D
7
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, if $\mathrm{a}=5, \mathrm{~b}=4, \cos (\mathrm{~A}-\mathrm{B})=\frac{31}{32}$, then $\mathrm{c}=$

A
6
B
7
C
5
D
2
MHT CET Papers
EXAM MAP