1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) \mathrm{d} x=$$

A
$2 x \tan ^{-1} x-\log \left(1+x^2\right)+\mathrm{c}$, where c is a constant of integration.
B
$2\left(x \tan ^{-1} x-\log \left(1+x^2\right)\right)+\mathrm{c}$, where c is a constant of integration.
C
$x \tan ^{-1} x+\log \left(1+x^2\right)+\mathrm{c}$, where c is a constant of integration.
D
$2\left(x \tan ^{-1} x+\log \left(1+x^2\right)\right)+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=\frac{a x}{x+1}, x \neq-1$, then for $\alpha=$ ________, $\mathrm{f}(\mathrm{f}(x))=x$.

A
$\sqrt{2}$
B
$-\sqrt{2}$
C
1
D
$-$1
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) of the region $\left\{(x, y) / x \geq 0, x+y \leq 3, x^2 \leq 4 y\right.$ and $\left.y \leq 1+\sqrt{x}\right\}$ is

A
$\frac{9}{2}$
B
$\frac{3}{2}$
C
$\frac{7}{2}$
D
$\frac{5}{2}$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The order of the differential equation, whose general solution is given by

$$y=\left(c_1+c_2\right) \cos \left(x+c_3\right)-c_4 e^{x+c 5}$$

where $c_1, c_2, c_3, c_4$ and $c_5$ are arbitrary constant, is

A
5
B
4
C
3
D
2
MHT CET Papers
EXAM MAP