1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{f}(x)=4 x^3-\frac{3}{x^4}$ such that $\mathrm{f}(2)=0$, then $\mathrm{f}(x)$ is equal to

A
$x^4+\frac{1}{x^3}+\frac{129}{8}$
B
$x^4+\frac{1}{x^3}-\frac{129}{8}$
C
$x^3+\frac{1}{x^4}+\frac{129}{8}$
D
  $x^3+\frac{1}{x^4}-\frac{129}{8}$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow 0} \frac{9^x-4^x}{x\left(9^x+4^x\right)}=$$

A
$\log \left(\frac{3}{2}\right)$
B
$\frac{1}{2} \log \left(\frac{3}{2}\right)$
C
$2 \log \left(\frac{3}{2}\right)$
D
$2 \log \left(\frac{9}{4}\right)$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the length of the perpendicular to a line from the origin is $2 \sqrt{2}$ units, which makes an angle of $135^{\circ}$ with the X -axis, then the equation of line is

A
$x+y=4$
B
$x-y+4=0$
C
$x-y=4$
D
$x+y+4=0$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A spherical rain drop evaporates at a rate proportional to its surface area. If initially its radius is 3 mm and after 1 second it is reduced to 2 mm , then at any time t its radius is (where $0 \leq \mathrm{t}<3$)

A
$\mathrm{3+t}$
B
$3-\mathrm{t}$
C
$4-\mathrm{t}$
D
$1+\mathrm{t}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12